
10
Probabilistic primality testing

In this chapter, we discuss some simple and efficient probabilistic algorithms for
testing whether a given integer is prime.

10.1 Trial division
Suppose we are given an integer n > 1, and we want to determine whether n is
prime or composite. The simplest algorithm to describe and to program is trial
division. We simply divide n by 2, 3, and so on, testing if any of these numbers
evenly divide n. Of course, we only need to divide by primes up to

√
n, since if

n is composite, it must have a prime factor no greater than
√
n (see Exercise 1.2).

Not only does this algorithm determine whether n is prime or composite, it also
produces a non-trivial factor of n in case n is composite.

Of course, the drawback of this algorithm is that it is terribly inefficient: it
requires Θ(

√
n) arithmetic operations, which is exponential in the bit length of n.

Thus, for practical purposes, this algorithm is limited to quite small n. Suppose, for
example, that n has 100 decimal digits, and that a computer can perform 1 billion
divisions per second (this is much faster than any computer existing today). Then
it would take on the order of 1033 years to perform

√
n divisions.

In this chapter, we discuss a much faster primality test that allows 100-decimal-
digit numbers to be tested for primality in less than a second. Unlike the above
test, however, this test does not find a factor of n when n is composite. More-
over, the algorithm is probabilistic, and may in fact make a mistake. However, the
probability that it makes a mistake can be made so small as to be irrelevant for all
practical purposes. Indeed, we can easily make the probability of error as small as
2−100 —should one really care about an event that happens with such a miniscule
probability?

306
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10.2 The Miller–Rabin test
We describe in this section a fast (polynomial time) test for primality, known as
the Miller–Rabin test. As discussed above, the algorithm is probabilistic, and
may (with small probability) make a mistake.

We assume for the remainder of this section that the number n we are testing for
primality is an odd integer greater than 1.

We recall some basic algebraic facts that will play a critical role in this section
(see §7.5). Suppose n = p

e1
1 · · · p

er
r is the prime factorization of n (since n is odd,

each pi is odd). The Chinese remainder theorem gives us a ring isomorphism

θ : Zn → Zpe11
× · · · × Zperr

[a]n 7→ ([a]pe11
, . . . , [a]perr ),

and restricting θ to Z∗n yields a group isomorphism

Z∗n ∼= Z∗
p
e1
1
× · · · × Z∗

p
er
r

.

Moreover, Theorem 7.28 says that each Z∗
p
ei
i

is a cyclic group, whose order, of

course, is ϕ(peii ) = p
ei−1
i (pi − 1), where ϕ is Euler’s phi function.

Several probabilistic primality tests, including the Miller–Rabin test, have the
following general structure. Define Z+

n to be the set of non-zero elements of Zn;
thus, |Z+

n | = n − 1, and if n is prime, Z+
n = Z∗n. Suppose also that we define a set

Ln ⊆ Z+
n such that:

• there is an efficient algorithm that on input n and α ∈ Z+
n , determines if

α ∈ Ln;
• if n is prime, then Ln = Z∗n;
• if n is composite, |Ln| ≤ c(n − 1) for some constant c < 1.

To test n for primality, we set a “repetition parameter” k, and choose random
elements α1, . . . , αk ∈ Z+

n . If αi ∈ Ln for all i = 1, . . . , k, then we output true;
otherwise, we output false.

It is easy to see that if n is prime, this algorithm always outputs true, and if n is
composite this algorithm outputs true with probability at most ck. If c = 1/2 and k
is chosen large enough, say k = 100, then the probability that the output is wrong
is so small that for all practical purposes, it is “just as good as zero.”

We now make a first attempt at defining a suitable set Ln. Let us define

Ln := {α ∈ Z+
n : αn−1 = 1}.

Note that Ln ⊆ Z∗n, since if αn−1 = 1, then α has a multiplicative inverse, namely,
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αn−2. We can test if α ∈ Ln in time O(len(n)3), using a repeated-squaring algo-
rithm.

Theorem 10.1. If n is prime, then Ln = Z∗n. If n is composite and Ln ( Z∗n, then
|Ln| ≤ (n − 1)/2.

Proof. Note that Ln is the kernel of the (n − 1)-power map on Z∗n, and hence is a
subgroup of Z∗n.

If n is prime, then we know that Z∗n is a group of order n − 1. Since the order of
a group element divides the order of the group, we have αn−1 = 1 for all α ∈ Z∗n.
That is, Ln = Z∗n.

Suppose that n is composite and Ln ( Z∗n. Since the order of a subgroup divides
the order of the group, we have |Z∗n| = t|Ln| for some integer t > 1. From this, we
conclude that

|Ln| =
1
t
|Z∗n| ≤

1
2
|Z∗n| ≤

n − 1
2

. 2

Unfortunately, there are odd composite numbers n such that Ln = Z∗n. Such
numbers are called Carmichael numbers. The smallest Carmichael number is

561 = 3 · 11 · 17.

Carmichael numbers are extremely rare, but it is known that there are infinitely
many of them, so we cannot ignore them. The following theorem puts some con-
straints on Carmichael numbers.

Theorem 10.2. Every Carmichael number n is of the form n = p1 · · · pr, where
the pi’s are distinct primes, r ≥ 3, and (pi − 1) | (n − 1) for i = 1, . . . , r.

Proof. Let n = p
e1
1 · · · p

er
r be a Carmichael number. By the Chinese remainder

theorem, we have an isomorphism of Z∗n with the group

Z∗
p
e1
1
× · · · × Z∗

p
er
r

,

and we know that each group Z∗
p
ei
i

is cyclic of order pei−1
i (pi − 1). Thus, the power

n − 1 kills the group Z∗n if and only if it kills all the groups Z∗
p
ei
i

, which happens if

and only if pei−1
i (pi − 1) | (n − 1). Now, on the one hand, n ≡ 0 (mod pi). On the

other hand, if ei > 1, we would have n ≡ 1 (mod pi), which is clearly impossible.
Thus, we must have ei = 1.

It remains to show that r ≥ 3. Suppose r = 2, so that n = p1p2. We have

n − 1 = p1p2 − 1 = (p1 − 1)p2 + (p2 − 1).

Since (p1−1) | (n−1), we must have (p1−1) | (p2−1). By a symmetric argument,
(p2 − 1) | (p1 − 1). Hence, p1 = p2, a contradiction. 2
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To obtain a good primality test, we need to define a different set L′n, which we
do as follows. Let n − 1 = t2h, where t is odd (and h ≥ 1 since n is assumed odd),
and define

L′n := {α ∈ Z+
n : αt2

h
= 1 and

αt2
j+1

= 1 =⇒ αt2
j
= ±1 for j = 0, . . . , h − 1}.

The Miller–Rabin test uses this set L′n, in place of the set Ln defined above. It is
clear from the definition that L′n ⊆ Ln.

Testing whether a given α ∈ Z+
n belongs to L′n can be done using the following

procedure:

β ← αt

if β = 1 then return true
for j ← 0 to h − 1 do

if β = −1 then return true
if β = +1 then return false
β ← β2

return false

It is clear that using a repeated-squaring algorithm, this procedure runs in time
O(len(n)3). We leave it to the reader to verify that this procedure correctly deter-
mines membership in L′n.

Theorem 10.3. If n is prime, then L′n =Z∗n. If n is composite, then |L′n| ≤ (n−1)/4.

Proof. Let n − 1 = t2h, where t is odd.

Case 1: n is prime. Let α ∈ Z∗n. Since Z∗n is a group of order n − 1, and the order
of a group element divides the order of the group, we know that αt2

h
= αn−1 = 1.

Now consider any index j = 0, . . . , h−1 such that αt2
j+1

= 1, and consider the value
β := αt2

j
. Then since β2 = αt2

j+1
= 1, the only possible choices for β are ±1—this

is because Z∗n is cyclic of even order and so there are exactly two elements of Z∗n
whose multiplicative order divides 2, namely ±1. So we have shown that α ∈ L′n.

Case 2: n = pe, where p is prime and e > 1. Certainly, L′n is contained in the
kernelK of the (n−1)-power map on Z∗n. By Theorem 6.32, |K| = gcd(ϕ(n), n−1).
Since n = pe, we have ϕ(n) = pe−1(p − 1), and so

|L′n| ≤ |K| = gcd(pe−1(p − 1), pe − 1) = p − 1 =
pe − 1

pe−1 + · · · + 1
≤
n − 1

4
.

Case 3: n = p
e1
1 · · · p

er
r is the prime factorization of n, and r > 1. Let

θ : Zn → Zpe11
× · · · × Zperr

be the ring isomorphism provided by the Chinese remainder theorem. Also, let
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ϕ(peii ) = ti2hi , with ti odd, for i = 1, . . . , r, and let g := min{h, h1, . . . , hr}. Note
that g ≥ 1, and that each Z∗

p
ei
i

is a cyclic group of order ti2hi .

We first claim that for every α ∈ L′n, we have αt2
g
= 1. To prove this, first

note that if g = h, then by definition, αt2
g
= 1, so suppose that g < h. By

way of contradiction, suppose that αt2
g 6= 1, and let j be the smallest index in

the range g, . . . , h − 1 such that αt2
j+1

= 1. By the definition of L′n, we must
have αt2

j
= −1. Since g < h, we must have g = hi for some particular index

i = 1, . . . , r. Writing θ(α) = (α1, . . . , αr), we have αt2
j

i = −1. This implies that
the multiplicative order of αti is equal to 2j+1 (see Theorem 6.37). However, since
j ≥ g = hi, this contradicts the fact that the order of a group element (in this case,
αti ) must divide the order of the group (in this case, Z∗

p
ei
i

).

For j = 0, . . . , h, let us define ρj to be the (t2j)-power map on Z∗n. From the claim
in the previous paragraph, and the definition of L′n, it follows that each α ∈ L′n
satisfies αt2

g−1
= ±1. In other words, L′n ⊆ ρ

−1
g−1({±1}), and hence

|L′n| ≤ 2|Ker ρg−1|. (10.1)

From the group isomorphism Z∗n ∼= Z∗
p
e1
1
× · · · × Z∗

p
er
r

, and Theorem 6.32, we have

|Ker ρj| =
r
∏

i=1

gcd(ti2hi , t2j) (10.2)

for each j = 0, . . . , h. Since g ≤ h, and g ≤ hi for i = 1, . . . , r, it follows
immediately from (10.2) that

2r|Ker ρg−1| = |Ker ρg| ≤ |Ker ρh|. (10.3)

Combining (10.3) with (10.1), we obtain

|L′n| ≤ 2−r+1|Ker ρh|. (10.4)

If r ≥ 3, then (10.4) directly implies that |L′n| ≤ |Z∗n|/4 ≤ (n − 1)/4, and we
are done. So suppose that r = 2. In this case, Theorem 10.2 implies that n is not
a Carmichael number, which implies that |Ker ρh| ≤ |Z∗n|/2, and so again, (10.4)
implies |L′n| ≤ |Z∗n|/4 ≤ (n − 1)/4. 2

EXERCISE 10.1. Show that an integer n > 1 is prime if and only if there exists an
element in Z∗n of multiplicative order n − 1.

EXERCISE 10.2. Show that Carmichael numbers satisfy Fermat’s little theorem;
that is, if n is a Carmichael number, then αn = α for all α ∈ Zn.
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EXERCISE 10.3. Let p be a prime. Show that n := 2p + 1 is a prime if and only if
2n−1 ≡ 1 (mod n).

EXERCISE 10.4. Here is another primality test that takes as input an odd integer
n > 1, and a positive integer parameter k. The algorithm chooses α1, . . . , αk ∈ Z+

n

at random, and computes

βi := α
(n−1)/2
i (i = 1, . . . , k).

If (β1, . . . , βk) is of the form (±1,±1, . . . ,±1), but is not equal to (1, 1, . . . , 1), the
algorithm outputs true; otherwise, the algorithm outputs false. Show that if n is
prime, then the algorithm outputs false with probability at most 2−k, and if n is
composite, the algorithm outputs true with probability at most 2−k.

In the terminology of §9.7, the algorithm in the above exercise is an example of
an “Atlantic City” algorithm for the language of prime numbers (or equivalently,
the language of composite numbers), while the Miller–Rabin test is an example of
a “Monte Carlo” algorithm for the language of composite numbers.

10.3 Generating random primes using the Miller–Rabin test
The Miller–Rabin test is the most practical algorithm known for testing primality,
and because of this, it is widely used in many applications, especially cryptographic
applications where one needs to generate large, random primes (as we saw in §4.7).
In this section, we discuss how one uses the Miller–Rabin test in several practically
relevant scenarios where one must generate large primes.

10.3.1 Generating a random prime between 2 and m
Suppose we are given an integer m ≥ 2, and want to generate a random prime
between 2 and m. We can do this by simply picking numbers at random until one
of them passes a primality test. We discussed this problem in some detail in §9.4,
where we assumed that we had a primality test IsPrime. The reader should review
§9.4, and §9.4.1 in particular. In this section, we discuss aspects of this problem
that are specific to the situation where the Miller–Rabin test is used to implement
IsPrime. To be more precise, let us define the following algorithm:

Algorithm MR. On input n, k, where n and k are integers with n > 1 and k ≥ 1,
do the following:
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if n = 2 then return true
if n is even then return false

repeat k times
α

¢← Z+
n

if α /∈ L′n return false

return true

So we shall implement IsPrime(·) as MR(·, k), where k is an auxiliary parame-
ter. By Theorem 10.3, if n is prime, the output of MR(n, k) is always true, while
if n is composite, the output is true with probability at most 4−k. Thus, this imple-
mentation of IsPrime satisfies the assumptions in §9.4.1, with ε = 4−k.

Let γ(m, k) be the probability that the output of Algorithm RP in §9.4 — using
this implementation of IsPrime—is composite. Then as we discussed in §9.4.1,

γ(m, k) ≤ 4−k ·
m − 1
π(m)

= O(4−k`), (10.5)

where ` := len(m), and π(m) is the number of primes up to m. Furthermore, if
the output of Algorithm RP is prime, then every prime is equally likely; that is, the
conditional distribution of the output, given that the output is prime, is (essentially)
the uniform distribution on the set of primes up to m.

Let us now consider the expected running time of Algorithm RP. As discussed
in §9.4.1, the expected number of iterations of the main loop in Algorithm RP is
O(`). Clearly, the expected running time of a single loop iteration is O(k`3), since
MR(n, k) executes at most k iterations of the Miller–Rabin test, and each such
test takes time O(`3). This leads to a bound on the expected total running time
of Algorithm RP of O(k`4). However, this estimate is overly pessimistic, because
when n is composite, we expect to perform very few Miller–Rabin tests — only
when n is prime do we actually perform all k of them.

To make a rigorous argument, let us define random variables measuring various
quantities during the first iteration of the main loop in Algorithm RP: N1 is the
value of n; K1 is the number of Miller–Rabin tests actually performed; Z1 is the
running time. Of course, N1 is uniformly distributed over {2, . . . ,m}. Let C1 be
the event that N1 is composite. Consider the conditional distribution of K1 given
C1. This is not exactly a geometric distribution, since K1 never takes on values
greater than k; nevertheless, using Theorem 8.17, we can easily calculate

E[K1 | C1] =
∑

i≥1

P[K1 ≥ i | C1] ≤
∑

i≥1

(1/4)i−1 = 4/3.
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Using the law of total expectation (8.24), it follows that

E[K1] = E[K1 | C1] P[C1] + E[K1 | C1] P[C1]

≤ 4/3 + kπ(m)/(m − 1).

Thus, E[K1] ≤ 4/3 + O(k/`), and hence E[Z1] = O(`3 E[K1]) = O(`3 + k`2).
Therefore, if Z is the total running time of Algorithm RP, then E[Z] = O(`E[Z1]),
and so

E[Z] = O(`4 + k`3). (10.6)

Note that the above estimate (10.5) for γ(m, k) is actually quite pessimistic. This
is because the error probability 4−k is a worst-case estimate; in fact, for “most”
composite integers n, the probability that MR(n, k) outputs true is much smaller
than this. In fact, γ(m, 1) is very small for large m. For example, the following is
known:

Theorem 10.4. We have

γ(m, 1) ≤ exp[−(1 + o(1)) log(m) log(log(log(m)))/ log(log(m))].

Proof. Literature—see §10.5. 2

The bound in the above theorem goes to zero quite quickly: faster than (logm)−c

for every positive constant c. While the above theorem is asymptotically very good,
in practice, one needs explicit bounds. For example, the following lower bounds
for − log2(γ(2`, 1)) are known:

` 200 300 400 500 600
3 19 37 55 74

Given an upper bound on γ(m, 1), we can bound γ(m, k) for k ≥ 2 using the
following inequality:

γ(m, k) ≤
γ(m, 1)

1 − γ(m, 1)
4−k+1. (10.7)

To prove (10.7), it is not hard to see that on input m, the output distribution of
Algorithm RP is the same as that of the following algorithm:

repeat
repeat

n′
¢← {2, . . . ,m}

until MR(n′, 1)
n← n′

until MR(n, k − 1)
output n
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Let N1 be the random variable representing the value of n in the first iteration of
the main loop in this algorithm, let C1 be the event that N1 is composite, and let
H1 be the event that this algorithm halts at the end of the first iteration of the main
loop. Using Theorem 9.3, we see that

γ(m, k) = P[C1 | H1] =
P[C1 ∩ H1]

P[H1]
≤

P[C1 ∩ H1]
P[C1]

=
P[H1 | C1] P[C1]

P[C1]

≤
4−k+1γ(m, 1)
1 − γ(m, 1)

,

which proves (10.7).

Given that γ(m, 1) is so small, for large m, Algorithm RP actually exhibits the
following behavior in practice: it generates a random value n ∈ {2, . . . ,m}; if n
is odd and composite, then the very first iteration of the Miller–Rabin test will
detect this with overwhelming probability, and no more iterations of the test are
performed on this n; otherwise, if n is prime, the algorithm will perform k − 1
more iterations of the Miller–Rabin test, “just to make sure.”

EXERCISE 10.5. Consider the problem of generating a random Sophie Germain
prime between 2 and m (see §5.5.5). One algorithm to do this is as follows:

repeat
n

¢← {2, . . . ,m}
if MR(n, k) then

if MR(2n + 1, k) then
output n and halt

forever

Assuming Conjecture 5.24, show that this algorithm runs in expected time
O(`5 + k`4), and outputs a number that is not a Sophie Germain prime with prob-
ability O(4−k`2). As usual, ` := len(m).

EXERCISE 10.6. Improve the algorithm in the previous exercise, so that under the
same assumptions, it runs in expected time O(`5 + k`3), and outputs a number that
is not a Sophie Germain prime with probability O(4−k`2), or even better, show
that this probability is at most γ(m, k)π∗(m)/π(m) = O(γ(m, k)`), where π∗(m) is
defined as in §5.5.5.

EXERCISE 10.7. Suppose in Algorithm RFN in §9.6 we implement algorithm
IsPrime(·) as MR(·, k), where k is a parameter satisfying 4−k(logm + 1) ≤ 1/2,
and m is the input to RFN. Show that the expected running time of Algorithm RFN
in this case is O(`5 + k`4 len(`)). Hint: use Exercise 9.13.
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10.3.2 Trial division up to a small bound
In generating a random prime, most candidates will in fact be composite, and so it
makes sense to cast these out as quickly as possible. Significant efficiency gains can
be achieved by testing if a given candidate n is divisible by any prime up to a given
bound s, before we subject n to a Miller–Rabin test. This strategy makes sense,
since for a small, “single precision” prime p, we can test if p | n essentially in time
O(len(n)), while a single iteration of the Miller–Rabin test takes time O(len(n)3).

To be more precise, let us define the following algorithm:

Algorithm MRS. On input n, k, s, where n, k, s ∈ Z, and n > 1, k ≥ 1, and s > 1,
do the following:

for each prime p ≤ s do
if p | n then

if p = n then return true else return false

repeat k times
α

¢← Z+
n

if α /∈ L′n return false

return true

In an implementation of the above algorithm, one would most likely use the
sieve of Eratosthenes (see §5.4) to generate the small primes.

Note that MRS(n, k, 2) is equivalent to MR(n, k). Also, it is clear that the
probability that MRS(n, k, s) makes a mistake is no more than the probability that
MR(n, k) makes a mistake. Therefore, using MRS in place of MR will not increase
the probability that the output of Algorithm RP is a composite—indeed, it is likely
that this probability decreases significantly.

Let us now analyze the impact on the running time Algorithm RP. To do this, we
need to estimate the probability σ(m, s) that a randomly chosen integer between 2
and m is not divisible by any prime up to s. If m is sufficiently large with respect to
s, the following heuristic argument can be made rigorous, as we will discuss below.
The probability that a random integer is divisible by a prime p is about 1/p, so the
probability that it is not divisible by p is about 1− 1/p. Assuming that these events
are essentially independent for different values of p (this is the heuristic part), we
estimate

σ(m, s) ≈
∏

p≤s
(1 − 1/p). (10.8)

Assuming for the time being that the approximation in (10.8) is sufficiently accu-
rate, then using Mertens’ theorem (Theorem 5.13), we may deduce that

σ(m, s) = O(1/ log s). (10.9)
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Later, when we make this argument more rigorous, we shall see that (10.9) holds
provided s is not too large relative to m, and in particular, if s = O((logm)c) for
some constant c.

The estimate (10.9) gives us a bound on the probability that a random integer
passes the trial division phase, and so must be subjected to Miller–Rabin; how-
ever, performing the trial division takes some time, so we also need to estimate the
expected number κ(m, s) of trial divisions performed on a random integer between
2 and m. Of course, in the worst case, we divide by all primes up to s, and so
κ(m, s) ≤ π(s) = O(s/ log s), but we can get a better bound, as follows. Let
p1, p2, . . . , pr be the primes up to s, and for i = 1, . . . , r, let qi be the probability
that we perform at least i trial divisions. By Theorem 8.17, we have

κ(m, s) =
r
∑

i=1

qi.

Moreover, q1 = 1, and qi = σ(m, pi−1) for i = 2, . . . , r. From this, and (10.9), it
follows that

κ(m, s) = 1 +
r
∑

i=2

σ(m, pi−1) = O
(

∑

p≤s
1/ log p

)

.

As a simple consequence of Chebyshev’s theorem (in particular, see Exercise 5.3),
we obtain

κ(m, s) = O(s/(log s)2). (10.10)

We now derive a bound on the running time of Algorithm RP, assuming that
IsPrime(·) is implemented using MRS(·, k, s). Let ` := len(m). Our argument
follows the same lines as was used to derive the estimate (10.6). Let us define
random variables measuring various quantities during the first iteration of the main
loop in Algorithm RP: N1 is the value of n; K1 is the number of Miller–Rabin tests
actually performed; Z1 is the running time. Also, let C1 be the event that N1 is
composite, and letD1 be the event that N1 passes the trial division check. Then we
have

E[K1] = E[K1 | C1 ∩ D1] P[C1 ∩ D1] + E[K1 | C1 ∩ D1] P[C1 ∩ D1]

+ E[K1 | C1] P[C1]

≤ 4/3 · P[C1 ∩ D1] + 0 · P[C1 ∩ D1] + k · P[C1]

≤ 4/3 · P[D1] + k · P[C1].

By (10.9) and Chebyshev’s theorem, it follows that

E[K1] = O(1/ len(s) + k/`). (10.11)
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Let us write Z1 = Z′1 + Z′′1, where Z′1 is the amount of time spent performing
the Miller–Rabin test, and Z′′1 is the amount of time spent performing trial divi-
sion. By (10.11), we have E[Z′1] = O(`3/ len(s) + k`2). Further, assuming
that each individual trial division step takes time O(`), then by (10.10) we have
E[Z′′1] = O(`s/ len(s)2). Hence,

E[Z1] = O(`3/ len(s) + k`2 + `s/ len(s)2).

It follows that if Z is the total running time of Algorithm RP, then

E[Z] = O(`4/ len(s) + k`3 + `2s/ len(s)2).

Clearly, we want to choose the parameter s so that the time spent performing trial
division is dominated by the time spent performing the Miller–Rabin test. To this
end, let us assume that ` ≤ s ≤ `2. Then we have

E[Z] = O(`4/ len(`) + k`3). (10.12)

This estimate does not take into account the time to generate the small primes
using the sieve of Eratosthenes. These values might be pre-computed, in which
case this time is zero, but even if we compute them on the fly, this takes time
O(s len(len(s))), which is dominated by the running time of the rest of the algo-
rithm for the values of s under consideration.

Thus, by sieving up to a bound s, where ` ≤ s ≤ `2, then compared to (10.6),
we effectively reduce the running time by a factor proportional to len(`), which is
a very real and noticeable improvement in practice.

As we already mentioned, the above analysis is heuristic, but the results are
correct. We shall now discuss how this analysis can be made rigorous; however,
we should remark that any such rigorous analysis is mainly of theoretical interest
only — in any practical implementation, the optimal choice of the parameter s is
best determined by experiment, with the analysis being used only as a rough guide.
Now, to make the analysis rigorous, we need prove that the estimate (10.8) is suf-
ficiently accurate. Proving such estimates takes us into the realm of “sieve theory.”
The larger m is with respect to s, the easier it is to prove such estimates. We shall
prove only the simplest and most naive such estimate, but it is still good enough
for our purposes.

Before stating any results, let us restate the problem slightly differently. For a
given real number y ≥ 0, let us call a positive integer “y-rough” if it is not divisible
by any prime p up to y. For all real numbers x ≥ 0 and y ≥ 0, let us define R(x, y)
to be the number of y-rough positive integers up to x. Thus, since σ(m, s) is the
probability that a random integer between 2 and m is s-rough, and 1 is by definition
s-rough, we have σ(m, s) = (R(m, s) − 1)/(m − 1).
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Theorem 10.5. For all real x ≥ 0 and y ≥ 0, we have
∣

∣

∣

∣

R(x, y) − x
∏

p≤y
(1 − 1/p)

∣

∣

∣

∣

≤ 2π(y).

Proof. To simplify the notation, we shall use the Möbius function µ (see §2.9).
Also, for a real number u, let us write u = buc + {u}, where 0 ≤ {u} < 1. Let Q
be the product of the primes up to the bound y.

Now, there are bxc positive integers up to x, and of these, for each prime p divid-
ingQ, precisely bx/pc are divisible by p, for each pair p, p′ of distinct primes divid-
ing Q, precisely bx/pp′c are divisible by pp′, and so on. By inclusion/exclusion
(see Theorem 8.1), we have

R(x, y) =
∑

d|Q

µ(d)bx/dc =
∑

d|Q

µ(d)(x/d) −
∑

d|Q

µ(d){x/d}.

Moreover,
∑

d|Q

µ(d)(x/d) = x
∑

d|Q

µ(d)/d = x
∏

p≤y
(1 − 1/p),

and
∣

∣

∣

∣

∑

d|Q

µ(d){x/d}
∣

∣

∣

∣

≤
∑

d|Q

1 = 2π(y).

That proves the theorem. 2

This theorem says something non-trivial only when y is quite small. Neverthe-
less, using Chebyshev’s theorem on the density of primes, along with Mertens’
theorem, it is not hard to see that this theorem implies that (10.9) holds when
s = O((logm)c) for some constant c (see Exercise 10.8), which implies the esti-
mate (10.12) above, when ` ≤ s ≤ `2.

EXERCISE 10.8. Suppose that s is a function of m such that s = O((logm)c) for
some positive constant c. Show that σ(m, s) = O(1/ log s).

EXERCISE 10.9. Let f be a polynomial with integer coefficients. For real x ≥ 0
and y ≥ 0, define Rf (x, y) to be the number of positive integers t up to x such
that f (t) is y-rough. For each positive integer m, define ωf (m) to be the number of
integers t ∈ {0, . . . ,m − 1} such that f (t) ≡ 0 (mod m). Show that

∣

∣

∣

∣

Rf (x, y) − x
∏

p≤y
(1 − ωf (p)/p)

∣

∣

∣

∣

≤
∏

p≤y
(1 + ωf (p)).
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EXERCISE 10.10. Consider again the problem of generating a random Sophie
Germain prime, as discussed in Exercises 10.5 and 10.6. A useful idea is to first
test if either n or 2n + 1 are divisible by any small primes up to some bound s,
before performing any more expensive tests. Using this idea, design and analyze
an algorithm that improves the running time of the algorithm in Exercise 10.6 to
O(`5/ len(`)2 + k`3) —under the same assumptions, and achieving the same error
probability bound as in that exercise. Hint: first show that the previous exercise
implies that the number of positive integers t up to x such that both t and 2t+ 1 are
y-rough is at most

x ·
1
2

∏

2<p≤y

(1 − 2/p) + 3π(y).

EXERCISE 10.11. Design an algorithm that takes as input a prime q and a bound
m, and outputs a random prime p between 2 and m such that p ≡ 1 (mod q).
Clearly, we need to assume that m is sufficiently large with respect to q. Ana-
lyze your algorithm assuming Conjecture 5.22. State how large m must be with
respect to q, and under these assumptions, show that your algorithm runs in time
O(`4/ len(`) + k`3), and that its output is incorrect with probability O(4−k`). As
usual, ` := len(m).

10.3.3 Generating a random `-bit prime
In some applications, we want to generate a random prime of fixed size — a ran-
dom 1024-bit prime, for example. More generally, let us consider the following
problem: given an integer ` ≥ 2, generate a random `-bit prime, that is, a prime in
the interval [2`−1, 2`).

Bertrand’s postulate (Theorem 5.8) implies that there exists a constant c > 0
such that π(2`) − π(2`−1) ≥ c2`−1/` for all ` ≥ 2.

Now let us modify Algorithm RP so that it takes as input an integer ` ≥ 2, and
repeatedly generates a random n in the interval {2`−1, . . . , 2` − 1} until IsPrime(n)
returns true. Let us call this variant Algorithm RP′. Further, let us implement
IsPrime(·) as MR(·, k), for some auxiliary parameter k, and define γ ′(`, k) to be
the probability that the output of Algorithm RP′ — with this implementation of
IsPrime—is composite.

Then using exactly the same reasoning as in §10.3.1, we have

γ ′(`, k) ≤ 4−k
2`−1

π(2`) − π(2`−1)
= O(4−k`);

moreover, if the output of Algorithm RP′ is prime, then every `-bit prime is equally
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likely, and the expected running time is O(`4 + k`3). By doing some trial division
as in §10.3.2, this can be reduced to O(`4/ len(`) + k`3).

The function γ ′(`, k) has been studied a good deal; for example, the following
explicit bound is known:

Theorem 10.6. For all ` ≥ 2, we have

γ ′(`, 1) ≤ `242−
√
`.

Proof. Literature—see §10.5. 2

Upper bounds for γ ′(`, k) for specific values of ` and k have been computed.
The following table lists some known lower bounds for − log2(γ ′(`, k)) for various
values of ` and k:

k\` 200 300 400 500 600
1 11 19 37 56 75
2 25 33 46 63 82
3 34 44 55 70 88
4 41 53 63 78 95
5 47 60 72 85 102

Using exactly the same reasoning as the derivation of (10.7), one sees that

γ ′(`, k) ≤
γ ′(`, 1)

1 − γ ′(`, 1)
4−k+1.

10.4 Factoring and computing Euler’s phi function
In this section, we use some of the ideas developed to analyze the Miller–Rabin
test to prove that the problem of factoring n and the problem of computing ϕ(n)
are equivalent. By equivalent, we mean that given an efficient algorithm to solve
one problem, we can efficiently solve the other, and vice versa.

Clearly, one direction is easy: if we can factor n into primes, so

n = p
e1
1 · · · p

er
r , (10.13)

then we can simply compute ϕ(n) using the formula

ϕ(n) = p
e1−1
1 (p1 − 1) · · · per−1

r (pr − 1).

For the other direction, first consider the special case where n = pq, for distinct
primes p and q. Suppose we are given n and ϕ(n), so that we have two equations
in the unknowns p and q:

n = pq and ϕ(n) = (p − 1)(q − 1).
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Substituting n/p for q in the second equation, and simplifying, we obtain

p2 + (ϕ(n) − n − 1)p + n = 0,

which can be solved using the quadratic formula.

For the general case, it is just as easy to prove a stronger result: given any non-
zero multiple of the exponent of Z∗n, we can efficiently factor n. In particular, this
will show that we can efficiently factor Carmichael numbers.

Before stating the algorithm in its full generality, we can convey the main idea
by considering the special case where n = pq, where p and q are distinct primes,
with p ≡ q ≡ 3 (mod 4). Suppose we are given such an n, along with a non-zero
multiple f of the exponent of Z∗n. Now, Z∗n ∼= Z∗p × Z∗q , and since Z∗p is a cyclic
group of order p − 1 and Z∗q is a cyclic group of order q − 1, this means that f is
a non-zero common multiple of p − 1 and q − 1. Let f = t2h, where t is odd, and
consider the following probabilistic algorithm:

α
¢← Z+

n

d← gcd(rep(α), n)
if d 6= 1 then output d and halt
β ← αt

d′ ← gcd(rep(β) + 1, n)
if d′ /∈ {1, n} then output d′ and halt
output “failure”

Recall that rep(α) denotes the canonical representative of α, that is, the unique
integer a such that [a]n = α and 0 ≤ a < n. We shall prove that this algorithm
outputs a non-trivial divisor of n with probability at least 1/2.

Let ρ be the t-power map on Z∗n, and let G := ρ−1({±1}). We shall show that
• G ( Z∗n, and
• if the algorithm chooses α /∈ G, then it splits n.

Since G is a subgroup of Z∗n, it follows that |G|/|Z+
n | ≤ |G|/|Z∗n| ≤ 1/2, and this

implies the algorithm succeeds with probability at least 1/2.
Let θ : Zn → Zp × Zq be the ring isomorphism from the Chinese remainder

theorem. The assumption that p ≡ 3 (mod 4) means that (p − 1)/2 is an odd
integer, and since f is a multiple of p− 1, it follows that gcd(t, p− 1) = (p− 1)/2,
and hence the image of Z∗p under the t-power map is the subgroup of Z∗p of order 2,
which is {±1}. Likewise, the image of Z∗q under the t-power map is {±1}. Thus,

θ(Im ρ) = θ((Z∗n)t) = (θ(Z∗n))t = (Z∗p)t × (Z∗q )t = {±1} × {±1},

and so Im ρ consists of the four elements:

1 = θ−1(1, 1), −1 = θ−1(−1,−1), θ−1(−1, 1), θ−1(1,−1).
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By the observations in the previous paragraph, not all elements of Z∗n map to ±1
under ρ, which means thatG ( Z∗n. Suppose that the algorithm chooses α ∈ Z+

n \G.
We want to show that n gets split. If α /∈ Z∗n, then gcd(rep(α), n) is a non-trivial
divisor of n, and the algorithm splits n. So let us assume that α ∈ Z∗n \G. Consider
the value β = αt = ρ(α) computed by the algorithm. Since α /∈ G, we have
β 6= ±1, and by the observations in the previous paragraph, we have θ(β) = (−1, 1)
or θ(β) = (1,−1). In the first case, θ(β+1) = (0, 2), and so gcd(rep(β)+1, n) = p,
while in the second case, θ(β + 1) = (2, 0), and so gcd(rep(β)+ 1, n) = q. In either
case, the algorithm splits n.

We now consider the general case, where n is an arbitrary positive integer. Let
λ(n) denote the exponent of Z∗n. If the prime factorization of n is as in (10.13), then
by the Chinese remainder theorem, we have

λ(n) = lcm(λ(pe1
1 ), . . . , λ(perr )).

Moreover, for every prime power pe, by Theorem 7.28, we have

λ(pe) =
{

pe−1(p − 1) if p 6= 2 or e ≤ 2,
2e−2 if p = 2 and e ≥ 3.

In particular, if d | n, then λ(d) | λ(n).
Now, assume we are given n, along with a non-zero multiple f of λ(n). We

would like to calculate the complete prime factorization of n. We may proceed
recursively: first, if n = 1, we may obviously halt; otherwise, we test if n is prime,
using an efficient primality test, and if so, halt (if we are using the Miller–Rabin
test, then we may erroneously halt even when n is composite, but we can ensure
that this happens with negligible probability); otherwise, we split n as n = d1d2,
using an algorithm to be described below, and then recursively factor both d1 and
d2; since λ(d1) | f and λ(d2) | f , we may use the same value f in the recursion.

So let us assume that n > 1 and n is not prime, and our goal now is to use f to
obtain a non-trivial factorization of n. If n is even, then we can certainly do this.
Moreover, if n is a perfect power—that is, if n = ab for some integers a > 1 and
b > 1—we can also obtain a non-trivial factorization of n (see Exercise 3.31).

So let us assume not only that n > 1 and n is not prime, but also that n is odd,
and n is not a perfect power. Let f = t2h, where t is odd. Consider the following
probabilistic algorithm:
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α
¢← Z+

n

d← gcd(rep(α), n)
if d 6= 1 then output d and halt
β ← αt

for j ← 0 to h − 1 do
d′ ← gcd(rep(β) + 1, n)
if d′ /∈ {1, n} then output d′ and halt
β ← β2

output “failure”

We want to show that this algorithm outputs a non-trivial factor of n with prob-
ability at least 1/2. To do this, suppose the prime factorization of n is as in
(10.13). Then by our assumptions about n, we have r ≥ 2 and each pi is odd.
Let λ(peii ) = ti2hi , where ti is odd, for i = 1, . . . , r, and let g := max{h1, . . . , hr}.
Note that since λ(n) | f , we have 1 ≤ g ≤ h.

Let ρ be the (t2g−1)-power map on Z∗n, and let G := ρ−1({±1}). As above, we
shall show that

• G ( Z∗n, and

• if the algorithm chooses α /∈ G, then it splits n,

which will prove that the algorithm splits n with probability at least 1/2.
Let

θ : Zn → Zpe11
× · · · × Zperr

be the ring isomorphism of the Chinese remainder theorem. We have

θ(Im ρ) = G1 × · · · × Gr,

where

Gi :=
(

Z∗piei
)t2g−1

for i = 1, . . . , r.

Let us assume the pi’s are ordered so that hi = g for i = 1, . . . , r′, and hi < g

for i = r′ + 1, . . . , r, where we have 1 ≤ r′ ≤ r. Then we have Gi = {±1} for
i = 1, . . . , r′, and Gi = {1} for i = r′ + 1, . . . , r.

By the observations in the previous paragraph, and the fact that r ≥ 2, the image
of ρ contains elements other than ±1; for example, θ−1(−1, 1, . . . , 1) is such an
element. This means that G ( Z∗n. Suppose the algorithm chooses α ∈ Z+

n \ G.
We want to show that n gets split. If α /∈ Z∗n, then gcd(rep(α), n) is a non-trivial
divisor of n, and so the algorithm certainly splits n. So assume α ∈ Z∗n \G. In loop
iteration j = g − 1, the value of β is equal to ρ(α), and writing θ(β) = (β1, . . . , βr),
we have βi = ±1 for i = 1, . . . , r. Let S be the set of indices i such that βi = −1.
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As α /∈ G, we know that β 6= ±1, and so ∅ ( S ( {1, . . . , r}. Thus,

gcd(rep(β) + 1, n) =
∏

i∈S

p
ei
i

is a non-trivial factor of n. This means that the algorithm splits n in loop iteration
j = g − 1 (if not in some earlier loop iteration).

So we have shown that the above algorithm splits n with probability at least 1/2.
If we iterate the algorithm until n gets split, the expected number of loop iterations
required will be at most 2. Combining this with the above recursive algorithm,
we get an algorithm that completely factors an arbitrary n in expected polynomial
time.

EXERCISE 10.12. Suppose you are given an integer n of the form n = pq, where
p and q are distinct, `-bit primes, with p = 2p′ + 1 and q = 2q′ + 1, where p′ and
q′ are themselves prime. Suppose that you are also given an integer t such that
gcd(t, p′q′) 6= 1. Show how to efficiently factor n.

EXERCISE 10.13. Suppose there is a probabilistic algorithm A that takes as input
an integer n of the form n = pq, where p and q are distinct, `-bit primes, with
p = 2p′ + 1 and q = 2q′ + 1, where p′ and q′ are prime. The algorithm also takes
as input α, β ∈ (Z∗n)2. It outputs either “failure,” or integers x, y, not both zero,
such that αxβy = 1. Furthermore, assume that A runs in expected polynomial
time, and that for all n of the above form, and for randomly chosen α, β ∈ (Z∗n)2,
A succeeds in finding x, y as above with probability ε(n). Here, the probability
is taken over the random choice of α and β, as well as the random choices made
during the execution of A on input (n, α, β). Show how to use A to construct
another probabilistic algorithm A′ that takes as input n as above, runs in expected
polynomial time, and that satisfies the following property:

if ε(n) ≥ 0.001, then A′ factors n with probability at least 0.999.

10.5 Notes
The Miller–Rabin test is due to Miller [67] and Rabin [79]. The paper by Miller
defined the set L′n, but did not give a probabilistic analysis. Rather, Miller showed
that under a generalization of the Riemann hypothesis, for composite n, the least
positive integer a such that [a]n ∈ Zn \ L′n is at most O((log n)2), thus giving rise
to a deterministic primality test whose correctness depends on the above unproved
hypothesis. The later paper by Rabin re-interprets Miller’s result in the context of
probabilistic algorithms.
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Bach [10] gives an explicit version of Miller’s result, showing that under the
same assumptions, the least positive integer a such that [a]n ∈ Zn \ L′n is at most
2(log n)2; more generally, Bach shows that the following holds under a generaliza-
tion of the Riemann hypothesis:

For every positive integer n, and every subgroup G ( Z∗n, the least
positive integer a such that [a]n ∈ Zn\G is at most 2(log n)2, and the
least positive integer b such that [b]n ∈ Z∗n \ G is at most 3(log n)2.

The first efficient probabilistic primality test was invented by Solovay and Strassen
[99] (their paper was actually submitted for publication in 1974). Later, in Chap-
ter 21, we shall discuss a recently discovered, deterministic, polynomial-time
(though not very practical) primality test, whose analysis does not rely on any
unproved hypothesis.

Carmichael numbers are named after R. D. Carmichael, who was the first to
discuss them, in work published in the early 20th century. Alford, Granville, and
Pomerance [7] proved that there are infinitely many Carmichael numbers.

Exercise 10.4 is based on Lehmann [58].
Theorem 10.4, as well as the table of values just below it, are from Kim and

Pomerance [55]. In fact, these bounds hold for the weaker test based on Ln.
Our analysis in §10.3.2 is loosely based on a similar analysis in §4.1 of Maurer

[65]. Theorem 10.5 and its generalization in Exercise 10.9 are certainly not the best
results possible in this area. The general goal of “sieve theory” is to prove useful
upper and lower bounds for quantities like Rf (x, y) that hold when y is as large as
possible with respect to x. For example, using a technique known as Brun’s pure
sieve, one can show that for log y <

√

log x, there exist β and β′, both of absolute
value at most 1, such that

Rf (x, y) = (1 + βe−
√

log x)x
∏

p≤y
(1 − ωf (p)/p) + β′

√
x.

Thus, this gives us very sharp estimates for Rf (x, y) when x tends to infinity, and
y is bounded by any fixed polynomial in log x. For a proof of this result, see §2.2
of Halberstam and Richert [44] (the result itself is stated as equation 2.16). Brun’s
pure sieve is really just the first non-trivial sieve result, developed in the early 20th
century; even stronger results, extending the useful range of y (but with larger error
terms), have subsequently been proved.

Theorem 10.6, as well as the table of values immediately below it, are from
Damgård, Landrock, and Pomerance [32].

The algorithm presented in §10.4 for factoring an integer given a multiple of
ϕ(n) (or, for that matter, λ(n)) is essentially due to Miller [67]. However, just as for
his primality test, Miller presents his algorithm as a deterministic algorithm, which
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he analyzes under a generalization of the Riemann hypothesis. The probabilistic
version of Miller’s factoring algorithm appears to be “folklore.”


